Original Article

Fluid Inclusion, Rare-Earth Element and Stable Isotope Study of Carbonate Minerals from the Pongkor Epithermal Gold–Silver Deposit, West Java, Indonesia

I Wayan WARMADA¹, Bernd LEHMANN², Marolop SIMANDJUNTAK³ and Herian Sudarman HEMES³

¹Department of Geological Engineering, Gadjah Mada University, Yogyakarta, Indonesia, ²Institute of Mineralogy and Mineral Resources, Technical University of Clausthal, Clausthal-Zellerfeld, Germany and ³PT Aneka Tambang (Persero) Tbk., Unit Penambangan Emas Pongkor, Bogor, Indonesia

Abstract

The Pongkor gold–silver deposit is the largest low-sulfidation epithermal precious metal deposit in Indonesia, and is of Pliocene age. The deposit consists of nine major subparallel quartz–adularia–carbonate veins with very low sulfide content. Vein infill records five paragenetic sequences, dominated by calcite in the early stage and quartz in the later stage of the hydrothermal evolution. Fluid inclusions in hydrothermal calcite and quartz of all stages indicate a temperature ranging from 180 to 220°C and a meteoric water origin (very low salinity close to 0 wt% NaCl equivalent). Carbon isotope data on calcite display a narrow range from −6.5 to −3.0 ‰ δ¹³C. The oxygen isotope values have a wider range of +4.6 to +10.1 ‰ δ¹⁸O. The broadly positive correlation of the δ¹³C versus δ¹⁸O plot suggests that the carbon species, which equilibrated during the formation of calcite, is dominated by H₂CO₃ not far from equilibrium with HCO₃⁻. The abundance of rare earth and yttrium (REY) in carbonate samples is very low (ΣREY mostly <2 ppm). However, there is always a positive Eu anomaly, which indicates a deeper fluid reservoir at >250°C.

Keywords: carbon, fluid inclusions, hydrothermal, oxygen, rare earth elements, stable isotopes, trace elements.

1. Introduction

Carbonates are the dominant gangue minerals (up to 60%) in the Pongkor gold–silver deposit. They consist of calcite and a small amount of rhodochrosite, kutnahorite, dolomite, ankerite and siderite. The formation of calcite in hydrothermal systems is controlled by fCO₂, pH, temperature, and aqueous calcium ion activity (Fournier, 1985; Simmons & Christenson, 1994). In most present-day geothermal systems fCO₂ appears to be a limiting factor, and the presence or absence of calcite in a hydrothermal mineral assemblage directly reflects the abundance of carbon dioxide of the coexisting fluid (Giggenbach, 1981, 1988).

This paper presents fluid inclusion, rare-earth element (REE) and carbon and oxygen isotope data of carbonate samples from the Pongkor gold–silver deposit. The aim of the present study was to constrain the physico-chemical conditions of mineralization and the origin of the hydrothermal fluids.

2. Geology and mineralization

The Pongkor area is part of the Neogene Sunda-Banda continental arc that developed along the southern...
Carbonate minerals, Pongkor, Indonesia

margin of the Eurasian plate with northward subduction of the Indian–Australian plate. Western Java hosts a number of Cenozoic epithermal precious metal deposits associated with active calc-alkaline volcanism (Fig. 1a, b). They consist of two types of deposits (Marcoux & Milési, 1994): that is, Au-(Sn) deposit of Cirotan type and Au-(Mn) deposit of Pongkor type (Fig. 1b). The 2-Ma Pongkor gold–silver deposit (Milési et al., 1999) is located at the northeastern flank of the Bayah dome, 80 km southwest of Jakarta. The geological unit exposed over an area of approximately 40 × 80 km consists of Late Paleozoic shale and sandstone basement rocks overlain by the central volcanic belt of Oligocene to Early Miocene age, which is composed of largely coarse-grained volcaniclastics rocks, with intercalated limestone and sandstone. Intermediate intrusive rocks are emplaced into Paleogene and Early Miocene formations (Basuki et al., 1994).

The local geology consists of three major volcanic units of Miocene–Pliocene age (Milési et al., 1999). The lower unit is characterized by submarine calc-alkaline andesitic volcanic rocks grading laterally into epiclastic deposits. The middle unit is marked by more explosive subaerial dacitic volcanic rocks composed of lapilli tuffs overlain by lapilli-and-block tuffs and fine-grained pyroclastic tuffs and epiclastic rocks. The upper unit is formed mainly by andesite lava flows with columnar structure.

The Pongkor deposit consists of at least nine major subparallel quartz–adularia–carbonate veins rich in manganese oxides and limonite in the oxidation zone, and very poor in sulfides. The veins are 740–2700 m long, several meters thick, >200 m deep and cut the three major volcanic units in a fan-like spatial distribution (Fig. 1c).

The main ore components are pyrite, chalcopyrite, sphalerite, galena, electrum, acanthite–aguilarite and polybasite–pearceite, with trace amount of proustite, tetrahedrite and stromeyerite/mckinstryite (Warmada et al., 2003). A trace amount of hessite was reported by

Fig. 1 (a) Tectonic map of the Indonesian region, (b) regional geology of west Java and the location of Pongkor and other major gold deposits (modified from Marcoux & Milési, 1994; Sujatmiko & Santoso, 1992) and (c) pattern of the vein system in the Pongkor gold–silver deposit (PT Aneka Tambang).

© 2007 The Authors
Journal compilation © 2007 The Society of Resource Geology
Milési et al. (1999). Electrum in amoeboid patches and a trace amount of uytenbogaardtite are the most important gold-bearing mineral and commonly occurs as inclusions in pyrite and more rarely in silver sulfosalts (Greffié et al., 2002; Warmada et al., 2003). Base-metal rich zone has been recognized at the 515-m level of the Ciurug–Cikoret vein (Syafrizal et al., 2005, 2007). The gold content of electrum is around 59 wt% (32–84 wt% Au).

3. Methods

3.1. Samples

The samples were collected from the Ciguha, Ciurug, Gudang Handak, and Kubang Cicau veins (Fig. 1c). The samples from the Ciguha and Gudang Handak veins were obtained from drill cores. The samples of the Ciurug vein were taken from the 515-m level stope and drill cores, whereas the samples from the Kubang Cicau vein were collected from the 550-, 600-, 650- and 690-m level stopes. Forty-five samples were studied in double-polished thin sections, polished thin sections, thin sections and powder, which were selected from different depth levels and from different vein systems.

Double-polished thin sections for fluid-inclusion analysis were made by hand in order to minimize overheating of low-temperature fluid inclusions during sample preparation. All heating and freezing determinations were carried out on a Fluid modified USGS gas-flow heating/freezing stage at the Laboratory of Economic Geology, Technical University of Clausthal, Germany. Its thermocouple was calibrated at temperatures of −56.6, 0.0 and 374.1°C using Syn Flinc synthetic fluid-inclusion standards (Fluid, Denver, USA). During analyses, the thermocouple tip was in contact with the carbonate chips. Freezing rates varied between 1 and 2°C/min; heating rates were 1–2°C/min.

Thirty-four carbonate samples for trace-element and eighteen samples for stable-isotope analysis were crushed to obtain small pieces of carbonate chips. Calcite, rhodochrosite and manganese-rich calcite were hand-picked under a binocular microscope and ground with an agate mortar. Carbonate powder for trace-element analysis was digested with HF and HClO₄ using a CEM Microwave Digestion System at the Laboratory of Economic Geology, Technical University of Clausthal, Germany. The trace-element composition was analyzed by ICP-MS at GeoForschungsZentrum, Germany. The detection limits in the solution varied from 0.001 to 0.05 ppm.

Carbon and oxygen isotope analyses of calcite were obtained by the phosphoric acid method at room temperature. All C-O isotope analyses were done by the laboratorium of Professor Dr J. Hoefs in the Institute of Isotope Geology, Göttingen, Germany. The isotopic composition of CO₂-gas was measured by mass spectrometer with a precision of ±0.2‰ (Hoefs, 1997). Carbon isotope ratios are reported relative to Peedee belemnite (PDB) standard and oxygen isotope ratios are reported relative to standard mean ocean water (SMOW). Isotopic data are reported in the δ notation, δ = [(Rsample/Rstandard) − 1] × 1000, where R is δ¹³C/¹²C or δ¹⁸O/¹⁶O, respectively.

4. Results

4.1. Carbonate mineralogy

The principal occurrences of carbonate in the Pongkor are: (i) replacement of rock-forming minerals (especially plagioclase) and volcanic glass; and (ii) vein infill as a main component of the carbonate–quartz stage and the manganese carbonate–quartz stage.

The vein-carbonate material is dominantly composed of fine to coarse crystalline calcite with locally banded rhodochrosite. Three calcite generations are found in the veins. Fine to medium-sized white calcite is formed in the early stage of mineralization, mostly along the footwall and hanging wall of the veins. The second stage of white, brown or honey-colored calcite is more massive and coarsely crystalline. The latest calcite stage, which is mostly coated by iron oxides, filled the fractures of existing veins.

Rhodochrosite [MnCO₃] is mostly altered to manganese oxides and was observed only locally as pink-banded lenses (up to 1 cm thick) in the deeper levels of the Ciguha and Kubang Cicau veins. It is associated with calcite, quartz and banded adularia. Manganan or manganese-rich calcite, with up to 15 wt% Mn is common in Pongkor. The abundant manganese oxide pockets probably result from weathering of these minerals. Dolomite [CaMg(CO₃)₂] and kutnahorite [CaMn(CO₃)₂] are rare and were found only by microprobe analysis. Dolomite occurs as small patchy crystals, probably as a result of local dolomitization processes. Siderite, kutnahorite and ankerite [Ca(Fe,Mg,Mn)(CO₃)₂] are also reported by Milési et al. (1999). Prismatic calcite with radial structure is locally found as a void filling in the quartz veins.
Platy (bladed) calcite was found in two varieties: (i) as a network of intersecting bladed infill of voids in quartz veins up to 1.5 cm in size, and (ii) as relics that vary from submicrometer up to 1 cm in size. The pseudomorph of platy calcite is characterized by coexistence with bladed quartz and clay minerals. The bladed texture appearance of quartz is interpreted as a pseudomorphic texture inherited from a platy calcite precursor (Dong et al., 1995). Ghost-blade texture is also found within quartz. Replacement textures of calcite by quartz are very common in the Pongkor vein systems.

4.2. Microthermometry

Fluid inclusions microthermometry was conducted on 34 selected carbonate-quartz samples of quartz-carbonate-adularia veins. The samples were selected from the carbonate-quartz stage, manganese carbonate-quartz stage and gray sulfide-quartz stage (Table 1). The inclusions have irregular to regular-elongated forms, and are mostly of negative crystal shape. They spread parallel to the calcite cleavage as a cluster of inclusions and are interpreted as primary inclusions. There are also fluid inclusions along microfractures, which are classified as secondary inclusions (according

Table 1 Fluid inclusion data and stable isotope composition of carbonate samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth</th>
<th>Mineral</th>
<th>Type</th>
<th>(T_H) (°C)</th>
<th>(n)</th>
<th>(T_M) (°C)</th>
<th>Salinity (wt% NaCl Eq.)</th>
<th>(\delta^{13}C)</th>
<th>(\delta^{18}O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciurug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRG06</td>
<td>10</td>
<td>Calcite</td>
<td>P</td>
<td>180.4–234.3</td>
<td>15</td>
<td>–0.7 to 0.0</td>
<td>1.23–0.00</td>
<td>–4.0</td>
<td>6.8</td>
</tr>
<tr>
<td>CRG19</td>
<td>80</td>
<td>Calcite</td>
<td>P</td>
<td>212.0–236.2</td>
<td>10</td>
<td>–1.1 to 0.2</td>
<td>1.91–0.35</td>
<td>–6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>CRG21</td>
<td>115</td>
<td>Calcite</td>
<td>P</td>
<td>191.4–243.7</td>
<td>11</td>
<td>–0.6 to 0.4</td>
<td>1.05–0.00</td>
<td>–4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>CRG24</td>
<td>95</td>
<td>Quartz</td>
<td>P</td>
<td>180.4–251.4</td>
<td>11</td>
<td>–0.8 to 0.2</td>
<td>1.40–0.35</td>
<td>–5.6</td>
<td>8.8</td>
</tr>
<tr>
<td>CRG25</td>
<td>50</td>
<td>Calcite</td>
<td>P</td>
<td>180.3–249.4</td>
<td>10</td>
<td>–0.4 to 0.1</td>
<td>0.71–0.00</td>
<td>–5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>CRG26</td>
<td>260</td>
<td>Calcite</td>
<td>P</td>
<td>185.1–216.6</td>
<td>10</td>
<td>–0.2 to 0.0</td>
<td>0.35–0.00</td>
<td>–4.8</td>
<td>7.3</td>
</tr>
<tr>
<td>CRG49</td>
<td>165</td>
<td>Calcite</td>
<td>P</td>
<td>183.4–241.8</td>
<td>12</td>
<td>–0.4 to 0.0</td>
<td>0.71–0.00</td>
<td>–5.8</td>
<td>5.7</td>
</tr>
<tr>
<td>CRG50</td>
<td>154</td>
<td>Calcite</td>
<td>P</td>
<td>195.2–231.7</td>
<td>12</td>
<td>–0.6 to 0.0</td>
<td>1.05–0.00</td>
<td>–5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>CRG73</td>
<td>200</td>
<td>Calcite</td>
<td>P</td>
<td>185.6–209.8</td>
<td>11</td>
<td>–0.3 to 0.0</td>
<td>0.53–0.00</td>
<td>–4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>CRG83</td>
<td>190</td>
<td>Calcite</td>
<td>P</td>
<td>192.2–209.1</td>
<td>13</td>
<td>–1.2 to 0.0</td>
<td>2.07–0.00</td>
<td>–5.6</td>
<td>8.8</td>
</tr>
<tr>
<td>CRG88</td>
<td>190</td>
<td>Calcite†</td>
<td>P</td>
<td>190.0–209.9</td>
<td>11</td>
<td>–0.4 to 0.0</td>
<td>0.71–0.00</td>
<td>–4.8</td>
<td>7.3</td>
</tr>
<tr>
<td>CRG108.1</td>
<td>200</td>
<td>Quartz</td>
<td>P</td>
<td>202.8–268.9</td>
<td>11</td>
<td>–1.1 to 0.1</td>
<td>1.91–0.18</td>
<td>–5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>CRG108.2</td>
<td>200</td>
<td>Calcite</td>
<td>P</td>
<td>195.6–224.1</td>
<td>11</td>
<td>–1.0 to 0.2</td>
<td>1.74–0.35</td>
<td>–5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Ciguha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGH27</td>
<td>183</td>
<td>Quartz</td>
<td>P</td>
<td>181.6–222.3</td>
<td>10</td>
<td>–0.3 to 0.0</td>
<td>0.53–0.00</td>
<td>–5.8</td>
<td>5.7</td>
</tr>
<tr>
<td>CGH28</td>
<td>85</td>
<td>Calcite†</td>
<td>P</td>
<td>187.2–219.7</td>
<td>10</td>
<td>–0.6 to 0.0</td>
<td>1.05–0.00</td>
<td>–6.3</td>
<td>5.2</td>
</tr>
<tr>
<td>CGH29</td>
<td>89</td>
<td>Calcite</td>
<td>P</td>
<td>170.9–215.8</td>
<td>11</td>
<td>–1.8 to 0.2</td>
<td>3.06–0.35</td>
<td>–5.2</td>
<td>10.1</td>
</tr>
<tr>
<td>CGH43a</td>
<td>60</td>
<td>Calcite</td>
<td>P</td>
<td>204.0–218.6</td>
<td>11</td>
<td>–0.8 to 0.0</td>
<td>1.40–0.00</td>
<td>–6.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Kubang Cicau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC15</td>
<td>210</td>
<td>Quartz</td>
<td>P</td>
<td>205.4–229.1</td>
<td>8</td>
<td>–1.4 to 0.0</td>
<td>2.41–0.00</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC54</td>
<td>100</td>
<td>Calcite†</td>
<td>P</td>
<td>171.2–220.2</td>
<td>9</td>
<td>–0.2 to 0.1</td>
<td>0.35–0.00</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC51</td>
<td>45</td>
<td>Quartz</td>
<td>P</td>
<td>190.0–357.1</td>
<td>12</td>
<td>–3.1 to 0.5</td>
<td>5.11–0.88</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC58</td>
<td>135</td>
<td>Quartz</td>
<td>P</td>
<td>198.8–293.5</td>
<td>6</td>
<td>–0.5 to 0.2</td>
<td>0.88–0.35</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC62</td>
<td>135</td>
<td>Quartz</td>
<td>P</td>
<td>205.2–302.0</td>
<td>10</td>
<td>–2.5 to 0.2</td>
<td>4.18–0.35</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC65</td>
<td>165</td>
<td>Calcite</td>
<td>P</td>
<td>193.5–232.4</td>
<td>11</td>
<td>–2.0 to 0.0</td>
<td>3.39–0.00</td>
<td>–3.4</td>
<td>9.7</td>
</tr>
<tr>
<td>KC66a</td>
<td>125</td>
<td>Calcite</td>
<td>P</td>
<td>184.1–231.0</td>
<td>11</td>
<td>–0.5 to 0.0</td>
<td>0.88–0.00</td>
<td>–6.2</td>
<td>5.0</td>
</tr>
<tr>
<td>KC66b</td>
<td>210</td>
<td>Quartz</td>
<td>P</td>
<td>191.5–337.1</td>
<td>13</td>
<td>–1.8 to 0.0</td>
<td>3.06–0.00</td>
<td>–6.2</td>
<td>5.0</td>
</tr>
<tr>
<td>KC67</td>
<td>45</td>
<td>Calcite†</td>
<td>P</td>
<td>219.6–226.6</td>
<td>3</td>
<td>–0.8 to 0.1</td>
<td>1.80–0.18</td>
<td>–3.0</td>
<td>8.4</td>
</tr>
<tr>
<td>PK198†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gudang Handak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH91.1</td>
<td>134</td>
<td>Calcite</td>
<td>P</td>
<td>200.6–224.2</td>
<td>11</td>
<td>–1.1 to 0.3</td>
<td>1.91–0.53</td>
<td>–4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>GH91.2</td>
<td>134</td>
<td>Calcite</td>
<td>P</td>
<td>207.8–241.2</td>
<td>12</td>
<td>–1.8 to 0.0</td>
<td>3.06–0.00</td>
<td>–5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>GH93.1</td>
<td>138</td>
<td>Calcite</td>
<td>P</td>
<td>210.4–248.2</td>
<td>8</td>
<td>–0.8 to 0.1</td>
<td>1.40–0.18</td>
<td>–6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>GH93.2</td>
<td>138</td>
<td>Quartz</td>
<td>P</td>
<td>224.6–269.4</td>
<td>5</td>
<td>–0.3 to 0.2</td>
<td>0.53–0.35</td>
<td>–6.0§</td>
<td>5.3</td>
</tr>
<tr>
<td>GH97</td>
<td>35</td>
<td>Calcite</td>
<td>P</td>
<td>189.0–217.8</td>
<td>12</td>
<td>–0.5 to 0.0</td>
<td>0.88–0.00</td>
<td>–5.7</td>
<td>4.6</td>
</tr>
<tr>
<td>GH100</td>
<td>34</td>
<td>Calcite</td>
<td>P</td>
<td>202.7–225.5</td>
<td>14</td>
<td>–0.9 to 0.0</td>
<td>1.57–0.00</td>
<td>–5.6</td>
<td>5.2</td>
</tr>
<tr>
<td>GH104</td>
<td>33</td>
<td>Calcite†</td>
<td>P</td>
<td>197.5–218.4</td>
<td>11</td>
<td>–0.6 to 0.0</td>
<td>1.05–0.00</td>
<td>–5.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

\(T_H\), homogenization temperature; \(T_M\), melting temperature. † Manganese calcite; ‡ Milési et al. (1999); § measured in cogenetic calcite.
Some inclusions are also found as single occurrences. Secondary inclusions occur in the variety of platy calcite and have irregular form with flat shape, parallel to the calcite blade/cleavage.

Based on filling ratio, the fluid inclusions can be divided into three types: The SL type represents fluid inclusions composed of a single fluid phase (liquid) without a vapor bubble. The L type is composed of two phase liquid-rich inclusions, and is the dominant fluid inclusion type in both quartz and calcite. The V type inclusions are two phase vapor-rich inclusions with \(V/(V + L) \) up to 50\%, which are found as primary inclusions in quartz.

The homogenization temperatures (\(T_H \)) of the carbonate-hosted fluid inclusions range from 171 to 249°C (maximum frequency, 200°C; arithmetic mean, 205 ± 15°C; \(n = 250 \)) and the melting temperatures (\(T_M \)) range from −2.0 to +0.4°C (maximum frequency, −0.1°C; arithmetic mean, −0.3 ± 0.3°C; \(n = 234 \)), which correspond to the salinity from 0 to 3.4 wt\% NaCl equivalent. The positive values of some \(T_M \) are probably due to ice metastability or CO\(_2\) hydrate formation (Roedder, 1963; Hedenquist & Henley, 1985). The \(T_H \) of the quartz-hosted fluid inclusions range from 180 to 357°C (maximum frequency, 220°C; arithmetic mean, 220 ± 21°C; \(n = 92 \)) and the \(T_M \) ranges from −3.1 to 0°C (maximum frequency, −0.5°C; arithmetic mean, −0.6 ± 0.6°C; \(n = 83 \)), which corresponds to the salinity from 0 to 5.1 wt\% NaCl equivalent. Relationships between the \(T_H \) and the \(T_M \) for quartz and carbonates from the Ciguha, Ciurug, Gudang Handak and Kubang Cicau veins are presented in Figure 2. No systematic relationship between \(T_H \) and depth was observed in the present study, while Syafrizal et al. (2005) reported spatial temperature gradient in the Ciurug vein.

4.3. Trace elements

The trace element data for 34 carbonate samples are listed in Table 2. The samples consist of calcite from the Ciurug, Gudang Handak and Kubang Cicau vein systems, and of Mn-rich calcite and rhodochrosite from the Ciguha vein system. Chondrite-normalized rare earth and yttrium patterns (REY; Y inserted between Dy and Ho according to its ionic radius) are generated by using the chondritic values of McDonough and Sun (1995).

The total REY abundances in the carbonate samples are very low (0.41–8.69 ppm), mostly <2 ppm. Carbonate samples with >2 ppm REY also have elevated Zr and Th abundances of >1 ppm Zr and >0.2 ppm Th, suggestive of contamination by accessory minerals or wall-rock particles. There is a slight fractionation of the light REE (LREE) relative to the heavy REE (HREE): \((\text{La} / \text{Yb})_\text{CN}\) ranges from 4 to 46. All samples display a slight negative Ce anomaly and a positive Eu anomaly. C\(_1\)-normalized \(\text{Eu} / \text{Eu}^* \) ratios range up to 63. The Ciguha vein system displays the strongest positive Eu anomalies. These samples consist of Mn-rich calcite to rhodochrosite. The other vein systems display smaller positive Eu anomalies.

The samples display \(Y / \text{Ho} \) ratios within the range from 29 to 69, which are mostly significantly higher than those of chondrite of 26–28. The samples with the lowest \(Y / \text{Ho} \) ratio are also those that have the highest REY, Zr and Th abundances, that is, are controlled by accessory phases or wall-rock contamination. All samples have a slightly positive \(Y \) anomaly. The altered andesitic wall rocks have a slightly negative Eu anomaly (Fig. 2). The scatter in some samples with very low HREE contents is due to the reduced analytical precision near the detection level (Table 2).

4.4. Carbon and oxygen isotopes

The carbonate samples consist of manganan calcite to pure calcite and were selected randomly from four vein systems. The \(\delta^{18}\text{O} \) and \(\delta^{13}\text{C} \) data are given in Table 1.
No distinct difference in oxygen and carbon isotope composition is observed between individual vein systems and individual stages. The carbon isotopic composition of the carbonate samples spans a narrow range of δ¹³C_PDB values between −6.5 and −3.0‰ (mean −5.3 ± 1.0‰). The equilibrium δ¹³C composition of carbon dioxide for most of these data falls between −5.6 and −1.7‰, calculated on the basis of fractionation factors of Chacko et al. (1991) (Fig. 3a). The oxygen isotope values have a wider range with δ¹⁸O_SMO_W values between +4.6 and +10.1‰ (mean +6.3 ± 1.8‰). Taking the calcite Th data of calcite as representative thermal conditions of isotopic equilibration, the equilibrium δ¹⁸O value of water ranging from −3.4 to +1.5‰, were calculated on the basis of fractionation factors of Zheng (1993) (Fig.3b).

5. Discussion

5.1. Evidence for boiling

The Pongkor epithermal system formed from very low-salinity ore fluid at temperatures of 180–220°C. The presence of vapour-rich fluid inclusions in quartz could be evidence of boiling. The presence of rhombic adularia in the bonanza ore and rhodochrosite could be evidence for boiling (Plumlee, 1994). Tabular adularia occurs as a band up to 1 mm thick, interbedded or interfingered with banded quartz or microcomb quartz. Such adularia has been reported from epithermal systems in central Queensland, Australia (Dong & Morrison, 1995), where adularia gave Th between 264 and 278°C, and was interpreted as resulting from boiling judged by disordered Al/Si distribution of adularia (Dong & Morrison, 1995).

The presence of platy calcite also indicates boiling (Simmons & Christenson, 1994). It is interesting to note that the vapor-rich end members of the boiling system were not observed in primary fluid inclusions of calcite. This may be a consequence of the shallow ore environment (open system), in which the vapor phase moves much more rapidly and is correspondingly much less likely to become trapped.

The majority of the carbonate-hosted inclusions melt at an average temperature of −0.3°C, indicating an apparent salinity of 1 wt% NaCl equivalent. There are also a small number of inclusions with moderate apparent salinities (2–5 wt% NaCl equiv.). The co-existence of moderate-salinity inclusions with low-salinity inclusions can be explained as the result of extensive boiling and vaporization of low-salinity fluid (Simmons & Browne, 1997; Scott & Watanabe, 1998), but it can also result from mixing of two fluids of different salinity.

Although the V/(L + V) ratio of the fluid inclusions is generally low, trends in Figure 4 suggest that boiling and mixing of fluids occurred during calcite and quartz precipitation. The trends are close to a schematic model proposed by Hedenquist and Henley (1985) and Ruggieri et al. (2001). The schematic positive gradient of T_M versus Th in Figure 4 (trend C) is due to the loss of steam. A negative gradient (trend B) would result from mixing between the main fluid and a very low-salinity fluid. Loss of steam is possible in a shallow open system, where the vapor-rich inclusions cannot be trapped in crystals. The trend A is fluid cooling at constant salinity.

Given the mineralogical evidence of boiling and the fact that T_M versus Th patterns suggest boiling, no pressure corrections are required for the Th. Otherwise, the pressure correction would be on the order of 10–20°C, taking into account the young age of the deposit and an erosion rate of 0.1 mm/year, typical of Cenozoic island arcs (Hedenquist et al., 2000). Based on the liquid–vapor curve of water (Haas, 1971), the hydrostatic depth of a boiling system at 180–220°C is 100–250 m, assuming a low-salinity fluid and no dissolved CO₂.

The decreasing of P_CO₂ on boiling, as carbon dioxide is lost to the steam phase, increases the pH of the solution and leads to supersaturation and precipitation of calcite.

5.2. REE distribution patterns

The REE characteristics of hydrothermal carbonates are controlled by the composition of the fluid and physicochemical conditions during precipitation (Bau & Möller, 1992). Variation in growth rate or solution flow rates may affect the total REE contents of carbonates (Möller et al., 1997). The REE composition of the fluid depends on degree of fluid–rock interaction and abundance of complexing species, that is, HCO₃⁻, CO₃²⁻, Cl⁻, and OH⁻. The mobility of REE in hydrothermal fluids may be largely influenced by sorption processes and chemical complexation during fluid migration (Bau & Möller, 1992).

The extremely low content of REY in the carbonate samples suggests that the fluid had low REY contents, although the carbon and oxygen isotope data suggest that there was water–rock interaction between wall rocks and fluid (meteoric water). The low REY contents
in calcite and, by inference, in the hydrothermal fluid, suggest a relatively short residence time of the meteoric water aquifer, that is, fast recharge.

The partition coefficients of REE in calcite decrease systematically with increasing REE atomic number (Zhong & Mucci, 1995). The slightly enriched LREE and depleted HREE patterns of the carbonate from the Pongkor gold–silver deposit are probably controlled by the affinity of those elements to calcite cation sites. Based on experimental studies of the distribution coefficient of the calcite–water system, the REE abundance in the hydrothermal fluid could have been 0.001–1-fold the REE content in calcite. The wide range of the REE partition coefficients is due to conflicting experimental data (Parekh et al., 1977; Terakado & Masuda, 1988; Zhong & Mucci, 1995).

The negative Ce anomalies are typical of marine carbonates and seawater, and reflect oxidizing conditions. The low salinity of the Pongkor hydrothermal system excludes involvement of seawater, and points to oxidized meteoric water.

The carbonate samples display a range of Eu anomalies, that is, from no Eu anomaly to strongly positive Eu anomaly (Fig. 2). The Eu anomalies are likely to directly reflect the Eu\(^{2+}/\text{Eu}^{3+}\) ratio in the fluid (Zhong & Mucci, 1995). The Eu\(^{2+}/\text{Eu}^{3+}\) ratio in a rock-buffered fluid is strongly dependent on temperature, and Eu\(^{2+}/\text{Eu}^{3+}\) equilibrium is established at around 250°C (Sverjensky, 1984; Bau & Möller, 1992). Positive Eu anomalies in a fluid therefore need a temperature of more than approximately 250°C, that is, the positive Eu anomaly in most calcite samples reflects higher temperature than recorded during calcite deposition and points to deeper fluid–rock interaction at a higher reservoir temperature than seen in the fluid inclusions trapped at near-surface environment.

The positive Eu anomaly in the carbonate samples could also be due to breakdown of plagioclase in the

Table 2 Trace element composition of selected carbonate samples

| Sample | Depth (m) | Rb (ppm) | Sr | Y | Zr | Cs | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Ho | Er | Tm | Yb | Lu | Hf | Pb | Th | U | \(\Sigma_{\text{REE}}\) | (La/Yb)\(_N\) | (La/Sm)\(_N\) | (Tb/Yb)\(_N\) | Eu/Eu* | Ce/Ce* | Y/Ho |
|--------|----------|----------|----|---|----|
| CGH28 | 85 | 1.73 | 86.4| 0.195 | 0.994 | 1.97 | 6.15 | 0.224 | 0.229 | 0.028 | 0.091 | 0.021 | 0.356 | 0.025 | 0.003 | 0.017 | 0.003 | <0.002 | <0.002 | 0.005 | 0.005 | 0.000 | 0.023 | 0.007 |
| CGH42 | 129 | 3.14 | 354 | 0.183 | 0.497 | 0.211 | 3.25 | 0.309 | 0.419 | 0.073 | 0.189 | 0.037 | 0.379 | 0.031 | 0.004 | 0.029 | 0.005 | <0.002 | <0.002 | 0.015 | 0.000 | 0.007 | 0.066 | 0.019 |
| CGH43 | 62 | 0.606 | 274 | 0.121 | 0.229 | 2.07 | 3.13 | 0.303 | 0.268 | 0.047 | 0.110 | 0.023 | 0.254 | 0.017 | 0.002 | 0.014 | 0.002 | <0.002 | <0.002 | 0.002 | 0.000 | 0.005 | 0.066 | 0.008 |
| CGR21 | 115 | 4.064 | 94.5| 0.303 | 0.36 | 0.752 | 7.10 | 0.303 | 0.176 | 0.023 | 0.092 | 0.029 | 0.078 | 0.017 | 0.001 | 0.042 | 0.010 | <0.002 | <0.002 | 0.003 | 0.000 | 0.006 | 0.066 | 0.009 |
| CGR25 | 50 | 8.33 | 269 | 0.213 | 1.10 | 0.483 | 7.07 | 0.627 | 1.042 | 0.150 | 0.424 | 0.080 | 0.082 | 0.044 | 0.008 | 0.056 | 0.061 | <0.002 | <0.002 | 0.003 | 0.000 | 0.005 | 0.066 | 0.009 |
| CGR26 | 260 | 5.08 | 277 | 0.298 | 1.10 | 0.051 | 7.49 | 0.252 | 1.043 | 0.140 | 0.424 | 0.080 | 0.082 | 0.044 | 0.008 | 0.056 | 0.061 | <0.002 | <0.002 | 0.003 | 0.000 | 0.005 | 0.066 | 0.009 |
| CGR50.2| 154 | 0.717 | 402 | 0.273 | 0.912 | 0.173 | 4.53 | 0.18 | 0.232 | 0.052 | 0.111 | 0.016 | 0.027 | 0.039 | 0.015 | 0.017 | 0.031 | 0.007 | 0.004 | 0.002 | 0.003 | 0.005 | 0.066 | 0.009 |
| CGR72 | 190 | 1.33 | 298 | 0.158 | 0.977 | 0.073 | 3.75 | 0.196 | 0.119 | 0.029 | 0.040 | 0.027 | 0.025 | 0.039 | 0.015 | 0.017 | 0.031 | 0.007 | 0.004 | 0.002 | 0.003 | 0.005 | 0.066 | 0.009 |
| CGR73 | 200 | 0.133 | 245 | 0.294 | 0.615 | 0.382 | 3.96 | 0.262 | 0.113 | 0.040 | 0.040 | 0.027 | 0.025 | 0.039 | 0.015 | 0.017 | 0.031 | 0.007 | 0.004 | 0.002 | 0.003 | 0.005 | 0.066 | 0.009 |
| CGR74 | 200 | 0.309 | 240 | 0.934 | 0.918 | 0.382 | 3.22 | 0.262 | 0.216 | 0.072 | 0.087 | 0.025 | 0.027 | 0.039 | 0.015 | 0.017 | 0.031 | 0.007 | 0.004 | 0.002 | 0.003 | 0.005 | 0.066 | 0.009 |
| CGR75 | 200 | 0.222 | 240 | 0.254 | 0.778 | 0.674 | 3.22 | 0.262 | 0.216 | 0.072 | 0.087 | 0.025 | 0.027 | 0.039 | 0.015 | 0.017 | 0.031 | 0.007 | 0.004 | 0.002 | 0.003 | 0.005 | 0.066 | 0.009 |

REY, rare earth and yttrium.
country rock as seen by hydrothermal alteration of plagioclase in the wall rock and formation of hydrothermal carbonate and adularia. There is a slight negative Eu anomaly in the altered andesitic country rock, which could reflect hydrothermal Eu depletion and complementary Eu enrichment in the fluid.

The Y/Ho ratios of the carbonate samples (29–69) are significantly higher than those of chondritic or igneous and sedimentary rocks (26–28) and are typical of hydrothermal systems (Bau & Dulski, 1995).

5.3. Carbon and oxygen isotopes

The isotope composition of carbonates is controlled by carbon-bearing species in solution as well as by temperature (Ohmoto, 1972). The solubility of calcite in a low-salinity hydrothermal fluid decreases with increasing temperature, and increases with increasing P_{CO_2} (Rimstidt, 1997). Therefore, degassing of CO$_2$ can be an effective process responsible for calcite precipitation (Rimstidt, 1997). The 13C and 18O values of a H$_2$CO$_3$- and HCO$_3$-dominated fluid can be estimated by a Rayleigh degassing-precipitation model, which is frequently applied to the interpretation of carbon isotope variations (Valley, 1986; Zheng, 1990). A plot of 13C and 18O data in Figure 5 shows two calcite precipitation models, which were calculated based on a Rayleigh-degassing precipitation model with the initial fluid values of -4‰ for 18O and -6.5‰ for 13C (HCO$_3$-dominated fluid) and -5.5‰ (H$_2$CO$_3$-dominated fluid), respectively. These initial fluid values are derived by an iterative model that adjusts the fractionation lines to the data set (Zheng, 1993).

The positive correlation between 13C and 18O of manganan calcite is likely to be caused by the precipitation of Mn-rich calcite from a H$_2$CO$_3$-dominated fluid accompanied by progressive decrease in...
Fig. 3 Stable isotope data of calcite: (a) $\delta^{13}C$ composition of calcite versus homogenization temperature (T_H). Isopleths show the calculated $\delta^{13}C$ per mil values of aqueous carbon dioxide in equilibrium with calcite as a function of temperature, calculated on the basis of fractionation factors of Chacko et al. (1991), (b) $\delta^{18}O$ composition of calcite versus homogenization temperature (T_H). Isopleths show the calculated $\delta^{18}O$ per mil values of water in equilibrium with calcite as a function of temperature, calculated on the basis of fractionation factors of Zheng (1993). PDB, Peedee belemnite; SMOW, standard mean ocean water.

Fig. 4 Scatter plot of homogenization temperature (T_H) versus melting temperature (T_M). (a) Ciguha; (b) Ciurug; (c) Gudang Handak; (d) Kubang Cicau. (•) Carbonate; (○) quartz. Trend A: fluid cooling. Trend B: mixing. Trend C: boiling.
temperature during CO₂ degassing. Most carbonate samples display a scatter distribution with an elongated horizontal trend, typical of HCO₃⁻-dominated fluids. Because no trace of gas was detected in the fluid inclusions during microthermometry measurements and by Raman microspectrometry (Milési et al., 1999), only pH and temperature are assumed to control the speciation of H₂CO₃ and HCO₃⁻ (Lüders & Möller, 1992).

The change from slightly acid (H₂CO₃) to fairly neutral pH (HCO₃⁻) is reflected by the Mn/Ca ratio of calcite (Johnson, 1982). The changing ratio, observed at Pongkor, could be explained by mixing of two fluids with different pH, but variable pH could also result from boiling. Progressive change in pH was also reported by Milési et al. (1999) deduced from carbonate zoning in the Ciguha vein, from siderite (low pH), to Mn-Mg carbonate and finally calcite (fairly neutral pH).

The δ¹³C value of carbonate samples displays a wider range than for the δ¹⁸O value. The variation in the δ¹⁸O values of the carbonates suggests variable degree of wall-rock interaction of the fluids and/or temperatures of equilibration. The present-day oxygen isotope composition of Java rainwater is approximately −5 to −6‰ δ¹⁸O (IAEA, 2001). Given an oxygen isotope composition of the volcanic host rocks of approximately +8‰ δ¹⁸O, the degree of oxygen exchange of the hydrothermal fluid system is between 10 and 50%.

6. Conclusions

Fluid inclusions in hydrothermal calcite define a temperature of formation of around 200°C and a meteoric water origin (very low salinity). There is no evidence of boiling observed in calcite from the fluid inclusion petrography. However, the presence of vapor-rich fluid inclusions in quartz, rhombic adularia, and lattice quartz texture replacing bladed calcite are interpreted as evidence for boiling. The absence of vapor-rich inclusions in calcite is probably due to the shallow ore-forming environment, in which the vapor phase moves rapidly (open system).

The REY content of carbonates is very low (<2 ppm). Some samples with higher REY content up to 8.7 ppm are probably caused by particles derived from host rocks (elevated Th and Zr contents, Y/Ho around 30). The very low REY abundance in calcite reflects a low REY content in the hydrothermal fluid, which is related to the low complexing capacity of the low-salinity fluid. The REY patterns display slightly negative Ce anomalies, positive Eu anomalies and positive Y anomalies. The negative Ce anomalies reflect an oxidizing environment. The positive Eu anomalies suggest that the initial fluid attained a minimum temperature of 250°C, which indicates water–rock interaction at higher temperature in a deeper reservoir. The positive Y anomalies reflect the aqueous environment in which Y and Ho become fractionated.

The carbon isotope composition of calcite has a narrow range with δ¹³C values between −6.5 and −3.0‰ (mean −5.2 ± 1.0‰), whereas the oxygen isotope values have a wider range of δ¹⁸O with values between +4.6 and +10.1‰ (mean +6.3 ± 1.8‰). The positive linear correlation between δ¹³C and δ¹⁸O values of manganoan calcite suggests that the Mn-rich calcite was deposited from a H₂CO₃-dominated fluid. Scatter distribution of carbonate samples with an elongated horizontal trend is typical of HCO₃⁻-dominated fluids. The stable isotope data indicate variable pH in the system, which likely resulted from boiling or mixing.

Acknowledgments

This contribution is part of a PhD project financed by Deutscher Akademischer Austauschdienst (DAAD). We gratefully acknowledge permission from PT Aneka

© 2007 The Authors
Journal compilation © 2007 The Society of Resource Geology

Fig. 5 Carbon and oxygen isotope composition of calcite from the Pongkor gold–silver deposit. Theoretical curves for calcite composition are calculated using a Rayleigh degassing-precipitation model with HCO₃⁻ and H₂CO₃, respectively, as the dominant dissolved carbon species in the fluid. The δ¹⁸O of the fluid is taken as −4‰, the δ¹³C as −6.5‰ for HCO₃⁻-dominated fluid and −5.5‰ for H₂CO₃-dominated fluid; the mol fraction of carbon in degassed CO₂ is taken as 0.05 and that of oxygen as 0.005. ()* Calcite; (○) manganoan calcite; (○) calculated model. SMOW, standard mean ocean water.
Tambang (Persero) Tbk to work in the Pongkor mine and to publish these results, and the help of Eko Janu Herlambang in the field, Klaus Herrmann (TU Clausthal) during electron microprobe analysis. We also thank Volker Lüders for useful discussion. The ICP-MS analysis was done by Peter Dulski (GFZ Postdam). We also wish to thank the two anonymous reviewers for constructive reviews, which helped clarify the focus of this paper and especially, Akira Imai who helped to significantly improve and clarify the original text.

References

